ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ГИДРОМЕТЕОРОЛОГИИ И МОНИТОРИНГУ ОКРУЖАЮЩЕЙ СРЕДЫ (РОСГИДРОМЕТ)

Обзор

состояния и загрязнения окружающей среды в Российской Федерации

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ГИДРОМЕТЕОРОЛОГИИ И МОНИТОРИНГУ ОКРУЖАЮЩЕЙ СРЕДЫ $(\ P\ O\ C\ \Gamma\ M\ D\ P\ O\ M\ E\ T\)$

ОБЗОР СОСТОЯНИЯ И ЗАГРЯЗНЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ В РОССИЙСКОЙ ФЕДЕРАЦИИ ЗА 2013 ГОД

Редакционная комиссия: д.г.н., проф. Г.М. Черногаева, Ю.В. Пешков, М.Г. Котлякова, В.Д. Смирнов

В Обзоре рассматриваются состояние и загрязнение окружающей среды на территории Российской Федерации за 2013 год по данным наблюдений, проводимых территориальными подразделениями Федеральной службы по гидрометеорологии и мониторингу окружающей среды. Материалы к Обзору по природным средам подготовлены институтами Росгидромета: ФГБУ «Главная геофизическая обсерватория им. А.И. Воейкова», ФГБУ «Гидрохимический институт», ФГБУ «Государственный океанографический институт им. Н.Н. Зубова», ФГБУ «НПО «Тайфун», ФГБУ «Институт глобального климата и экологии Росгидромета и РАН», ФГБУ «Государственный гидрологический институт», ФГБУ «Гидрометцентр России», ФГБУ «Центральная аэрологическая обсерватория», ФГБУ «Институт прикладной геофизики», Северо-Западным филиалом ФГБУ «НПО «Тайфун», а также ФГБУ «Центральное УГМС».

Обобщение материалов выполнено ФГБУ «Институт глобального климата и экологии Росгидромета и РАН» и Управлением мониторинга загрязнения окружающей среды, полярных и морских работ Росгидромета.

Обзор предназначен для широкой общественности, ученых и практиков природоохранной сферы деятельности. С Обзором можно ознакомиться на сайте Росгидромета http://www.meteorf.ru/ и на сайте ФГБУ «ИГКЭ Росгидромета и РАН» http://downloads.igce.ru/publications/reviews/review2013.pdf.

> Верстка В. Демкин Дизайн обложки: Д. Черногаев

[©] Росгидромет, 2014 г.

[©] Перепечатка любых материалов из Обзора только со ссылкой на Росгидромет

Содержание

Предис	ловие	5
1. Гели	огеофизические и гидрометеорологические особенности 2013 года	6
	Гелиогеофизическая обстановка	
1.2.	Опасные гидрометеорологические явления	10
1.3.	Температура воздуха	13
	Атмосферные осадки	
	Снежный покров зимой 2012–2013 гг	
	Водные ресурсы	
2. Ouer	нка антропогенного влияния на климатическую систему и состояние окружающей среды	29
	Характеристика государственной сети наблюдений за состоянием и загрязнением	
	окружающей среды	29
2.2.	Оценка антропогенного влияния на климатическую систему	
	2.2.1. Эмиссия парниковых газов	
	2.2.2. Содержание CO ₂ и CH ₄ в атмосфере	
2.3.	Оценка состояния и загрязнения атмосферного воздуха	
2.0.	2.3.1. Оптическая плотность и прозрачность атмосферы	
	2.3.2. Электрические характеристики приземного слоя атмосферы	
	2.3.3. Состояние озонового слоя над Россией и прилегающими территориями в 2013 г	
	2.3.4. Фоновое содержание загрязняющих веществ в атмосферном воздухе (по данным СКФМ)	
	2.3.5. Ионный состав атмосферных осадков на российских станциях Глобальной Службы	
	Атмосферы ВМО	54
	2.3.6. Кислотность и химический состав атмосферных осадков	
	2.3.7. Фоновое загрязнение атмосферных осадков (по данным сети СКФМ)	
	2.3.8. Выпадения серы и азота в результате трансграничного переноса загрязняющих	00
	воздух веществ	64
	2.3.9. Региональное загрязнение воздуха и осадков по данным станций мониторинга ЕАНЕТ	
24	Содержание загрязняющих веществ в почвах и растительности	
۵.٦.	2.4.1. Содержание загрязняющих веществ в почвах и растительности биосферных	/
	заповедников по данным сети СКФМ	70
	2.4.2. Фоновые массовые доли токсикантов промышленного происхождения РФ	
	2.4.3. Оценка отклика древостоев сосны обыкновенной на воздействие климатических факторов.	
2.5	Загрязнение поверхностных вод	
2.5.	2.5.1. Фоновое загрязнение поверхностных вод по данным сети гидрохимического мониторинга	
	2.5.2. Фоновое загрязнение поверхностных вод (по данным СКФМ)	
2.6	Радиационная обстановка на территории России	
۷.0.	2.6.1. Радиоактивное загрязнение приземного слоя воздуха	
	2.6.2. Радиоактивное загрязнение приземного слоя воздуха	
	2.6.3. Радиационная обстановка на территории федеральных округов	
	2.0.5. Радиационная оостановка на территории федеральных округов	90
	язнение окружающей среды регионов России	
3.1.	Загрязнение атмосферного воздуха населенных пунктов	
	3.1.1. Характеристика загрязнения атмосферного воздуха	
	3.1.2. Тенденции изменений загрязнения атмосферного воздуха за 5 лет	
	3.1.3. Общая оценка уровня загрязнения атмосферного воздуха в городах страны	103
	3.1.4. Характеристика загрязнения атмосферного воздуха на территориях субъектов	
	Российской Федерации	
3.2.	Загрязнение почвенного покрова	108

Содержание

3.2.1. Загрязнение почв токсикантами промышленного происхождения	108
3.2.2. Загрязнение почв остаточными количествами пестицидов	
3.3. Качество поверхностных вод	119
3.3.1. Качество поверхностных вод по гидрохимическим показателям	119
3.3.2. Гидробиологическая оценка состояния пресноводных объектов	141
3.3.3. Водные объекты с наибольшими уровнями загрязнения, аварийные ситуации	
3.3.4. Загрязнение поверхностных водных объектов в результате трансграничного переноса	
химических веществ	146
3.3.5. Загрязнение морей Российской Федерации	
3.3.6. Гидробиологическая оценка состояния ряда морских экосистем	158
4. Комплексная оценка состояния окружающей среды отдельных регионов и природных объекто	ов172
4.1. Московский регион	
4.1.1. Загрязнение атмосферного воздуха	
4.1.2. Качество поверхностных вод	
4.1.3. Характеристика радиационной обстановки	
4.1.4. Влияние автомобильных выбросов в районе метромоста (г. Москва, Воробьевы горы)	
на лихенобиоту	178
4.2. Состояние озера Байкал	
4.2.1. Поступление химических веществ из атмосферы	181
4.2.2. Гидрохимические наблюдения за качеством воды озера Байкал	
4.2.3. Состояние донных отложений озера Байкал	182
4.2.4. Гидробиологические наблюдения на озере	188
4.2.5. Состояние воды основных притоков озера	188
4.2.6. Состояние окружающей среды по высотным поясам растительности в долине	
р. Давша биосферного заповедника «Баргузинский»	191
4.3. Комплексная оценка загрязнения окружающей природной среды побережий	
арктических морей	195
4.4. Мониторинг ртути в атмосферном воздухе Российской Арктики	210
4.5. Загрязнение окружающей среды в районах расположения объектов по уничтожению	
химического оружия	215
4.5.1. Загрязнение атмосферного воздуха	215
4.5.2. Загрязненность поверхностных вод в ЗЗМ объектов УХО	217
4.5.3. Загрязненность почв в ЗЗМ объектов УХО	219
Заключение	221
Список ежегодных Обзоров загрязнения природных сред, издаваемых НИУ Росгидромета	
Список авторов	
-	

Предисловие

Представленные в данном Обзоре обобщенные характеристики и оценки состояния абиотической составляющей окружающей среды (атмосферного воздуха, поверхностных вод и почв) получены по данным государственной наблюдательной сети, являющейся основой осуществления государственного мониторинга состояния и загрязнения окружающей среды в Российской Федерации.

Результаты выполненного анализа данных наблюдений и выводы о сохранении высоких уровней загрязнения атмосферного воздуха в городах страны и поверхностных вод многих водных объектов (с оценкой приоритетности существующих проблем) являются важным элементом информационной поддержки реализации задач государственного надзора за источниками выбросов (сбросов) вредных веществ в окружающую среду.

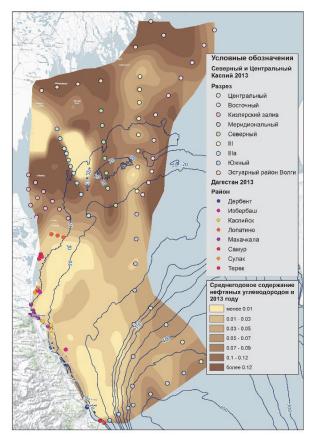
Подготовленная информация ориентирована также на ее использование для комплексной оценки последствий влияния неблагоприятных факторов окружающей среды на здоровье населения, наземные и водные экосистемы. Кроме того, информация о динамике и фактических уровнях загрязнения окружающей среды позволяет использовать эти данные для оценки эффективности осуществления природоохранных мероприятий с учетом тенденций и динамики происходящих изменений.

Samuel

Руководитель Росгидромета

А.В. Фролов

3.3.5. Загрязнение морей Российской Федерации


Каспийское море

В 2013 г. наблюдения за загрязнением вод Северного и Среднего Каспия проводились на станциях в эстуарном районе Волги, в Кизлярском заливе, в Северном Каспии на станции вековых разрезов III, IIIа, Восточный и Северный, в Центральном Каспии на станции разрезов Центральный, Меридиональный и Южный в апреле, июле, сентябре, октябре и ноябре, а также на Дагестанском взморье в течение всего года у Лопатина, гг. Махачкала, Каспийск, Избербаш, Дербент и на устьевых взморьях рек Терек, Сулак и Самур (рис. 3.55).

Эстуарный район Волги. Осенью 2013 г. концентрация нефтяных углеводородов (НУ) составляла $0,07-0,15~\rm Mг/дм^3$ (3 ПДК), в среднем $0,1~\rm Mг/дм^3$; синтетических поверхностно-активных веществ (СПАВ) $31-92~\rm Mкг/дм^3$ (в среднем $59,5~\rm Mkr/дм^3$, $0,6~\rm ПДК$) Концентрация биогенных элементов (мкг/дм³) составила: фосфор фосфатов $P-PO_4$ 6-64,6; общий фосфор Ptotal 39,6-118,6; аммонийный азот $N-\rm NH_4$ 1-142,4; нитритный азот $N-\rm NO_3$ 2,2-83,8; кремний $\rm Si-SiO_4$ $180-2220~\rm Mkr/дм³$. Уровень содержания растворенного в воде кислорода составлял $8,51-11,51~\rm MrO_2/дм³$ (среднее $9,79~\rm MrO_2/дм³$). Качество морских вод оценивается как «умеренно загрязненные».

Кизлярский залив. Концентрация СПАВ в водах на западе Северного Каспия изменялась в пределах 5-44 мкг/дм³ при среднем содержании 0,2 ПДК; НУ 0,02-0,15 мг/дм³, средняя концентрация составила 1 ПДК и по сравнению с предыдущим годом повысилась. Содержание биогенных элементов изменялось в пределах естественной межгодовой изменчивости. Концентрация меди изменялась в диапазоне $1,9-14,7 \text{ мг/дм}^3$ (в среднем $6,69 \text{ мкг/дм}^3$); цинка 0.5-36.3 мкг/дм³ (в среднем 11.1 мкг/дм³, что выше уровня 2012 г.). Содержание растворенного в воде кислорода в апреле составляло $7,57-10,93 \text{ мгO}_2/\text{дм}^3$, в среднем $9,16 \text{ мгO}_2/\text{дм}^3$. Качество вод оценивается как «умеренно-загрязненные».

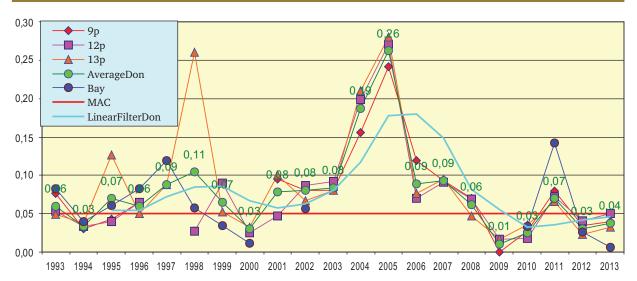

Северный Каспий (разрезы Восточный, III, IIIа, Северный). За последние 5 лет концентрация НУ на вековых разрезах изменялась в пределах от аналитического нуля до 0,22 мг/дм³ (4,4 ПДК), средняя величина составила

Рис. 3.55. Распределение нефтяных углеводородов (мг/дм 3) в водах Северного и Центрального Каспия в 2013 г.

 $0,06 \text{ мг/дм}^3$; содержание фенолов $0-4 \text{ мкг/дм}^3$ при среднем содержании 1 ПДК. На станциях разрезов Восточный и Северный концентрация НУ изменялась в пределах от аналитического нуля до 0.16 мг/дм^3 (3.2 ПДК), средняя составила $0.06 \,\mathrm{MF/дM}^3 \,(1.2 \,\mathrm{ПДK});$ содержание СПАВ – $0-270 \text{ мкг/дм}^3$, средняя величина 26,8 мкг/дм³ (0,2 ПДК). Концентрация биогенных элементов в Северном Каспии была в пределах естественной межгодовой изменчивости. Содержание железа в водах Северного Каспия изменялось в диапазоне 4–24 мкг/дм 3 (в среднем 12 мкг/дм 3), меди 30-280 (в среднем 67,8 мкг/дм³) и цинка 1,7-92(в среднем 22,5 мкг/дм³). Кислородный режим был в пределах нормы. Содержание растворенного в воде кислорода изменялось в интервале $2,38-11,61 \text{ мгO}_2/\text{дм}^3$, в среднем $9,12 \text{ мгO}_2/\text{дм}^3$. Приоритетными загрязняющими веществами являлись нефтяные углеводороды, фенолы и медь. Качество вод оценивается как «умереннозагрязненные».

Центральный Каспий (разрезы Центральный, Меридиональный, Южный). Результаты анализа отобранных в октябре проб показали, что концентрация НУ составила 0,01–0,09 мг/дм³; средняя концентрация составила 0,036 мг/дм³, максимальная концен-

Рис. 3.56. Динамика средней концентрации нефтяных углеводородов (мг/дм³) в протоках дельты реки Дон в 1993–2013 гг.

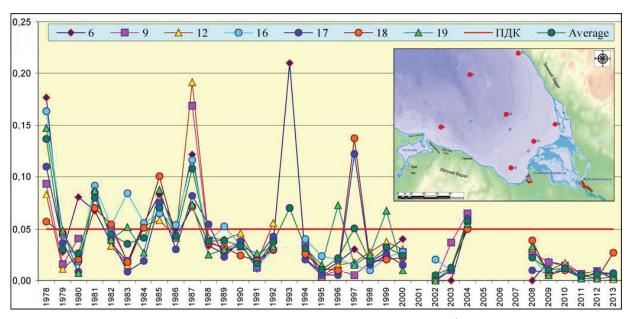
трация достигала 1,8 ПДК; среднее содержание СПАВ составило 16 мкг/дм³, максимум достигал 27 мкг/дм³. Концентрация биогенных элементов (мкг/дм³) составила: P-PO₄ 2,5–33,7; Ptotal 17-41,4; N-NH₄ 36,3-171,1; N-NO₂ 0,6-4,7; N-NO₃ 1,3-54,2; Si-SiO₄ 386-1274. Содержание железа в водах Центрального Каспия изменялось в диапазоне $6-18 \text{ мкг/дм}^3$ (в среднем 11 мкг/дм^3), меди 8-312 (в среднем 61,9 мкг/дм³) и цинка 5,2-39,5(в среднем $16,1 \text{ мкг/дм}^3$). В конце октября кислородный режим был неудовлетворительным, в это время на значительной акватории концентрация растворенного в воде кислорода была ниже установленного норматива $6,0 \text{ мгO}_2/\text{дм}^3$, а наименьшее значение $(0,41 \text{ мгO}_2/\text{дм}^3)$ было отмечено на Меридиональном разрезе. Среднее концентрация кислорода составила 6,57 мг/дм³. Качество вод в районе Меридионального разреза оценивается как «чистые», а в районе Центрального и Южного разрезов – как «умереннозагрязненные».

Дагестанское взморье. В 2013 г. наблюдения вдоль всего Дагестанского побережья выполнялись с апреля по декабрь. Содержание НУ в поверхностном слое морских вод сохранилось на прежнем уровне и изменялось в пределах 0,001–0,23 мг/дм³ (4,6 ПДК, в июле у Дербента), в среднем 0.067 мг/дм^3 ($1.4 \Pi \text{ДК}$). Концентрация СПАВ изменялась от значений ниже предела обнаружения (5 мкг/дм 3) до 110 мкг/дм 3 (1,1 ПДК, в мае у Махачкалы на поверхности на глубине 4 м), в среднем за год 32,8 мкг/дм 3 , что более чем в 2 раза выше значения 2012 г. Содержание меди в водах взморья изменялось в диапазоне 2-9,3 мкг/дм³ (в среднем 4,2 мкг/дм³); цинка 1,0-35,7 мкг/дм³ (в среднем 9,5 мкг/дм³). Концентрация биогенных элементов (мкг/дм³) была в пределах естественной межгодовой изменчивости и составила (мкг/дм³): P-PO₄ 0,33-24,8 (в среднем 7,95); Ptotal 8,63-32,0 (в среднем 19,9); N-NH₄ 34,7–379,1 (в среднем 164,8); N-NO₂ 0,16-7,38 (в среднем 2,52); N-NO₃ 1,2–71,5 (в среднем 29,5); Ntotal 78,7–464 (в среднем 257,6); Si-SiO₄ 122,6-1138 (в среднем 462,3). Следует отметить небольшое снижение концентрации аммонийного азота в последние четыре года по сравнению с непрерывным ростом его содержания в водах всего Дагестана в начале десятилетия. Содержание растворенного в воде кислорода изменялось в интервале $5,78-12,09 \text{ мгO}_2/\text{дм}^3 \text{ в среднем } 9,29 \text{ мгO}_2/\text{дм}^3.$ Качество морских вод в районе Лопатина, у Избербаша, Каспийска и Махачкалы, и на взморье Сулака оценивается как «чистые», а в остальных районах - как «умеренно-загрязненные».

Устьевая область реки Дон и Таганрогский залив. Наблюдения за качеством вод в дельте р. Дон и в восточной части Таганрогского залива выполнялись в апреле-октябре 2013 г. В заливе по сравнению с 2012 годом состояние вод улучшилось. Концентрация нефтяных углеводородов не превысила ПДК, а среднегодовая составила $0,006 \,\mathrm{mr/дm^3},\,$ что в почти в 7 раз ниже значения 2012 года (0,04 мг/дм 3). Наибольшие значения $(0,03 \text{ мг/дм}^3)$ были отмечены в июне на поверхности и у дна недалеко от устья рукава Песчаный. Однако сток реки Дон сохраняется сильно загрязненным нефтяными углеводородами. Среднегодовая концентрация НУ в трех речных водотоках составила 0,038 мг/дм³, максимальная – 0,15 мг/дм³ (в апреле, устье рукава Песчаный). Среднее содержание НУ в русловых водотоках за последние несколько лет стабилизировалось на уровне ниже 1 ПДК (рис. 3.56).

В водах восточной части залива концентрация СПАВ не превышала ПДК и изменялась в пределах 15–29 мкг/дм³; средняя концентрация составила 20 мкг/дм³. В речных водах дельты

р. Дон среднегодовое содержание СПАВ составило 20 мкг/дм³, максимальное – 36 мкг/дм³ (0,4 ПДК, в мае). Хлорорганические пестициды групп ГХЦГ и ДДТ, также как и их изомеры и метаболиты (α-ΓΧЦГ, γ-ГХЦГ, ДДТ и ДДЭ) в отобранных пробах воды не были обнаружены. Вместе с тем, в отобранных пробах в дельте р. Дон и в восточной части Таганрогского залива была обнаружена растворенная ртуть в концентрации 0.01 мкг/дм^3 (1 ПДК для пресных вод). Концентрация растворенного кислорода в водах залива изменялась в диапазоне $5,09-12,32 \text{ мгO}_2/\text{дм}^3$, составив в среднем 9,41 мгO₂/дм³. Минимальное значение было зафиксировано в сентябре в придонном слое на глубине 5 м. В остальных пробах содержание растворенного кислорода не опускалось ниже допустимого предела $6,0 \text{ мгO}_2/\text{дм}^3$. В речном стоке р. Дон диапазон изменения растворенного кислорода изменялся в пределах $4,67-10,43 \text{ мгO}_2/\text{дм}^3$, в среднем $7,92 \text{ мгO}_2/\text{дм}^3$. Кислородный режим в речных водах был в пределах нормы, за исключением июля, когда в устье рукава Мертвый Донец концентрация растворенного кислорода в пробах воды, отобранных как на поверхности, так и у дна, была ниже нормы. В целом, уровень загрязнения вод в устьевых участках дельтовых протоков реки Дон в последние годы оценивается как незначительный. Наибольшее значение концентрации нефтяных углеводородов в 2013 г. достигало 3 ПДК. Содержание детергентов и ртути в дельте Дона составляло доли ПДК, а хлорорганические пестициды групп ГХЦГ и ДДТ не были обнаружены. Средние и максимальные значения концентраций биогенных элементов были очень высокими, что указывает на высокий уровень эвтрофикации вод района. Кислородный режим в русловых протоках в общем благоприятный, концентрация кислорода ниже норматива отмечалась только в отдельные дни июля. Воды восточной части Таганрогского залива оцениваются как «чистые». Динамика последних лет свидетельствует о снижении уровня загрязненности вод, в первую очередь, нефтяными углеводородами, максимальная концентрация которых в 2013 г. не достигала 1 ПДК. Концентрация детергентов в водах залива составляла доли ПДК. Содержание биогенных веществ оставалось очень высоким. Уровень содержания растворенного в воде кислорода в целом соответствовал многолетнему режиму и только в сентябре в придонной пробе был ниже норматива.


Устьевая область реки Кубань и Темрюкский залив. В 2013 г. наблюдения за качеством вод Темрюкского залива проводились в период с января по декабрь в середине канала порта Темрюк, а также с апреля по октябрь на устьевом

взморье и в дельте рукавов Протока и Кубань, а также в гирлах лиманов. В порту Темрюка в течение года концентрация нефтяных углеводородов изменялась от значений ниже предела обнаружения (0.02 мг/дм^3) до 0.23 мг/дм^3 $(4.6 \Pi \text{ДK},$ в придонном слое в декабре); средняя годовая концентрация составила 0,05 мг/дм³. Уровень загрязнения устьевой области реки Кубань и прибрежных вод Темрюкского залива нефтяными углеводородами в последнее десятилетие стабилизировался на уровне 1 ПДК. Концентрация СПАВ изменялась от значений ниже предела определения (10 мкг/дм 3) до 19 мкг/дм 3 и в среднем составила 6,4 мкг/дм³. Хлорорганические пестициды групп ГХЦГ и ДДТ, также как и их изомеры и метаболиты (α -ГХЦГ, γ -ГХЦГ, ДДТ и ДДЭ) в воде не были обнаружены. Содержание ртути в воде составило 0,004-0,008 мкг/дм³. Средняя годовая концентрация растворенного кислорода составила 9,16 мкO₂/дм³. В период с июля по сентябрь регистрировалась концентрация кислорода ниже допустимого предела $3,06-5,77 \text{ мгO}_2/\text{дм}^3$ Содержание сероводорода в пробах воды не было обнаружено.

В Темрюкском заливе на мелководном взморье рукавов Протока и Кубань, а также в устьевых районах гирл лиманов, концентрация нефтяных углеводородов изменялась от величин ниже предела обнаружения (0.02 мг/дм^3) до $0,12 \text{ мг/дм}^3$ (2,4 ПДК). Максимум был отмечен в июле в море в 500 м от устья гирла Соловьевского Курчанского лимана. Средняя годовая концентрация составила 0,027 мг/дм³. Содержание СПАВ было ниже предела обнаружения (10 мкг/дм³). Максимальная концентрация составила 14 мкг/дм³, средняя 1,2 мг/дм³. Хлорорганические пестициды групп ГХЦГ и ДДТ, также как и их изомеры и метаболиты (α-ΓΧЦГ, у-ГХЦГ, ДДТ и ДДЭ) в воде не были обнаружены. Содержание растворенной ртути составило 0,001-0,010 мкг/дм³. Кислородный режим в прибрежных водах Темрюкского залива, в целом, был неудовлетворительным - концентрация растворенного в воде кислорода была ниже норматива 6,0 мгO₂/дм³ Наименьшая концентрация растворенного в воде кислорода $(0.87 \text{ мгO}_2/\text{дм}^3)$ отмечалась в июле в придонном слое в 500 м от устья гирла Пересыпское. Среднегодовое содержание кислорода составило 7,72 мг O_2 /дм³, что практически соответствует значению 2012 года. Содержание сероводорода в пробах воды не было обнаружено.

Белое море

Двинский залив. В июле и октябре 2013 г. в центральной части залива было выполнено две гидрохимические съемки. Концентрация не-

Рис. 3.57. Динамика средней концентрации нефтяных углеводородов (мг/дм 3) в водах Двинского залива в 1978–2013 гг.

фтяных углеводородов в отобранных пробах достигала $0,07 \text{ мг/дм}^3$ ($1,4 \Pi Д К$), средняя величина составила 0,0066 мг/дм³. Начиная с 2000 г., уровень загрязненности вод залива НУ существенно снизился, и средние концентрации не достигают ПДК (рис. 3.57). Содержание ДДТ в водах Двинского залива не обнаружено, а концентрация его метаболита ДДЭ в среднем составляла 0,2 нг/дм³, диапазон изменений 0-4 нг/дм³. Содержание линдана (γ -ГХЦГ) в среднем составило 0,8 нг/л, диапазон изменений 0,5–1,5 нг/л; его изомера α-ГХЦГ – 0,5 нг/л, диапазон изменений 0-1,5 нг/л. Кислородный режим вод Двинского залива был в пределах нормы; среднее содержание растворенного кислорода составило $9,80 \text{ мгO}_2/\text{дм}^3$, диапазон изменений 7,26–12,45 мг O_2 /дм³. По результатам наблюдений в 2013 г. уровень загрязненности вод залива невысокий. Содержание биогенных элементов в пределах естественной межгодовой изменчивости.

Кандалакшский залив. В 2013 г. наблюдения на водпосту в торговом порту г. Кандалакша выполнялись с марта по октябрь. Содержание нефтяных углеводородов в поверхностном слое морских вод в марте и в октябре составило 0,006 мг/дм³, в мае – 0,005 мг/дм³; в июне и июле – 0,007 мг/дм³; в августе – 0,008 мг/дм³; средняя – 0,0065 мг/дм³. За весь период наблюдений среднее содержание фенола составило 0,105 мкг/дм³, максимальное содержание было обнаружено в мае и составило 0,21 мкг/дм³. Содержание других фенольных соединений достигало: мета-крезола – 0,07 мкг/дм³; орто-крезола – 0,02 мкг/дм³; пара-крезола – 0,08 мкг/дм³; 2,6-ксиленола – 0,12 мкг/дм³; гваякола

-0,23 мкг/дм 3 . Суммарное содержание веществ этой группы в воде водпоста достигало 0.34 мкг/дм^3 (0.1 ПДК) в середине мая. Хлорорганические пестициды были обнаружены в водах порта Кандалакша в марте, мае и июне. Средняя $(0,7 \text{ нг/дм}^3)$ и максимальная (2,1 нг/дм³) концентрации линдана превышали значения 2012 года, тогда как его изомера α-ГХЦГ существенно увеличились. Содержание ДДТ не обнаружено, а содержание его метаболитов составило всего лишь 0,1 нг/дм³. Появление пестицидов в воде порта характерно только для весенне-летнего периода года, что, вероятно, обусловлено дождевым смывом с суши. Среднее содержание железа и меди в воде порта составило 87,0 мкг/дм³ и 6,5 мкг/дм³ соответственно. Содержание в водах порта всех остальных металлов было невысоким; по сравнению с 2012 годом содержание меди, никеля, свинца, железа и цинка немного уменьшилось. Уровень растворенного в воде кислорода был в целом пониженным и изменялся в диапазоне 6,11-8,90 мг O_2 /дм³, в среднем – $7,39 \text{ мгO}_2/\text{дм}^3$. Содержание в воде порта легкоокисляемых органических веществ, определяемых по БПК₅, изменялось от 0,55 до $2,84 \text{ мгO}_2/\text{дм}^3$. В 2013 г. качество вод Кандалакшского залива оценивалось как «умеренно загрязненные». Приоритетными загрязняющими веществами были металлы (железо и медь), а также легкоокисляемые органические вещества. В целом уровень загрязнения вод в торговом порту г. Кандалакша сохраняется невысоким по сравнению с другими морями РФ. В последние годы уровень загрязненности вод стабилизировался без значительных межгодовых колебаний, а состояние среды в районе водпоста с марта по октябрь оценивается как удовлетворительное. По сравнению с предыдущими годами наблюдений уровень загрязнения нефтяными углеводородами существенно не изменился.

Баренцево море

Кольский залив. В 2013 г. наблюдения на водпосту в торговом порту г. Мурманска выполнялись с января по ноябрь, а также в июне были отобраны пробы в среднем и северном колене Кольского залива. Концентрация НУ в водах порта в течение года изменялась в диапазоне $0,07-0,83 \text{ мг/дм}^3$ (1,4-17,0 ПДК); в среднем за год составила $0,236 \text{ мг/дм}^3$ (4,7 ПДК), что соответствует уровню последних нескольких лет. Летом 2013 г. в среднем и северном коленах залива НУ были обнаружены только на станции севернее г. Североморска (0,113 мг/дм³, 2,2 ПДК). Концентрация суммы фенолов в водах в районе водпоста была заметно выше значений 2012 года, однако не превышала допустимого уровня и изменялась от аналитического нуля до $0,73 \text{ мкг/дм}^3$ ($0,7 \Pi \text{ДК}$), в среднем $0,36 \text{ мкг/дм}^3$. Концентрация отдельных соединений групп фенолов в 2-3 раза превышала значения 2012 года и достигала: фенола – 0,61 мг/дм³; мета-крезола – 0.04 мг/дм³; орто-крезола – 0.13 мг/ $дм^3$; пара-крезола – 0,05 мг/ $дм^3$; 2,6-ксиленола -0.24 мг/дм^3 и гваякола -0.24 мкг/дм^3 . Содержание СПАВ в водах водпоста в среднем составило 20,33 мкг/дм³ и изменялось в пределах 7–41 мкг/дм 3 (0,07–0,41 ПДК). В среднем и северном коленах залива концентрация детергентов не превышала 12 мкг/дм³. В 2013 г. отмечено снижение содержания хлорорганических пестицидов в водах торгового порта. Концентрация ХОП изменялась от 0 до 2,2 нг/дм³, что не превышает ПДК. Отмечается тенденция к снижению содержания тяжелых металлов в водах залива. За последние 3 года среднее содержание железа снизилось с 232 мкг/дм 3 (4,6 ПДК) до 145 мкг/дм 3 (2,9 ПДК), хрома – с 0,9 мкг/дм 3 до 0,01 мкг/дм³, цинка – с 20,9 мкг/дм³ (0,4 ПДК) до 8,4 мкг/дм 3 (0,17 ПДК), свинца – с 2,8 мкг/ $дм^3(0.28 \Pi JK)$ до 0.6 мкг/дм $^3(0.06 \Pi JK)$. В то же время концентрация марганца повысилась с 15,8 мкг/дм 3 (0,3 ПДК) до 28,6 мкг/дм 3 (0,6 ПДК). Содержание меди сохранилось на прежнем уровне 5,5 мкг/дм 3 (1,1 ПДК). Уровень растворенного в воде кислорода в течение года на водпосту Мурманска изменялся в диапазоне 8,35-13,36 мг O_2 /дм³, в среднем $10,89 \text{ мгO}_2/\text{дм}^3$, что соответствует установленной норме. Качество вод в районе водпоста по сравнению с 2012 годом несколько улучшилось и оценивается как «грязные». Приоритетными загрязняющими веществам остаются нефтяные углеводороды, железо и медь. Район г. Мурманска остается одним из наиболее загрязненных участков на всем шельфе РФ. Отмечаемые в течение последних нескольких лет в водах торгового порта г. Мурманска повышенные концентрации нефтяных углеводородов (4,7 ПДК в 2013 г.), железа (8,8 ПДК), марганца (2,1 ПДК) и меди (1,70 ПДК) позволяют характеризовать состояние вод как катастрофическое. Кроме того, в района порта регистрировалось повышенное содержание в воде пестицидов групп ДДТ и ГХЦГ, легкоокисляемых органических веществ, свинца, никеля и ртути. При этом кислородный режим в районе порта не нарушен, заморные явления не наблюдались. Результаты наблюдений на остальной части Кольского залива в течение последних трех лет свидетельствуют об улучшении ситуации. Уровень загрязнения вод относительно невысокий во всех коленах залива, а их состояние можно оценить как удовлетворитель-

Тихий океан

Шельф полуострова Камчатка. Авачинская губа. В 2013 г. наблюдения за качеством вод в Авачинской губе проводились с мая по октябрь. Среднее содержание НУ в морских водах составило 1 ПДК (0.05 мг/дм^3) ; максимальное значение (0,98 мг/дм³, 20 ПДК) было отмечено на поверхностном горизонте на станции у входа в бухту Крашенинникова в июне. Среднее содержание фенолов, также как и в 2012 году, составило 4 ПДК; максимальная разовая концентрация (11 ПДК) была отмечена в августе в поверхностном слое в приустьевой зоне реки Авача. Среднее содержание анионных поверхностно-активных веществ (АПАВ) по сравнению с 2012 годом снизилось и составило 0,3 ПДК (32 мкг/дм 3), а максимальная концентрация (1,4 ПДК) была зафиксированы в в августе в придонном слое в приустьевой зоне реки Авача. Кислородный режим в целом был в пределах многолетней нормы. Среднее содержание растворенного кислорода в поверхностном слое составило $11,49 \text{ мгO}_2/\text{дм}^3$, в придонном – $9,06 \text{ мгO}_2/\text{дм}^3$, в толще вод – $10,32 \text{ мгO}_2/\text{дм}^3$. В 2013 г., кислородный минимум пришелся на август, что обусловлено характерной для летнего периода сильной вертикальной стратификацией: в центральной котловине концентрация растворенного кислорода снижалась до 4,13 мгO₂/дм³. Качество вод Авачинской губы в 2013 году оценивается как «загрязненные». В целом воды Авачинской губы в течение длительного времени значительно загрязнены фенолами, выделяемыми затопленной древесиной, а также поступающими с хозяйственно-бытовыми сточными водами и отходами

производства. Кроме фенолов приоритетными загрязняющими веществами являются нефтяные углеводороды и детергенты. Несмотря на небольшое ухудшение качества вод в 2013 году, в целом состояние морских вод Авачинской губы удовлетворительное.

Охотское море

В последние годы прибрежные воды шельфа о. Сахалин, включая промышленные районы в заливе Анива у порта Корсаков и поселка Пригородное, а также у поселка Стародубское, остаются относительно чистыми и характеризуются, в основном, как «умеренно загрязненные». В течение 2011–2013 гг. приоритетными загрязняющими веществами являются нефтяные углеводороды (среднегодовая концентрация в 2013 году изменялось в пределах 0,26-0,86 ПДК), фенолы (среднегодовая концентрация в 2013 году изменялось в пределах 0,69-1,56 ПДК) и медь (среднегодовая концентрация в 2013 году изменялось в пределах 0,60–1,62 ПДК). Содержание в водах шельфа острова детергентов и тяжелых металлов – цинка, свинца и кадмия не превышало ПДК. Кислородный режим в пределах нормы, только в августе-сентябре в разных участках шельфа было зарегистрировано несколько случаев пониженного содержания растворенного кислорода. В целом, состояние вод у о. Сахалин может быть оценено как удовлетворительное; существенных трендов изменения концентраций загрязняющих веществ не выявлено.

Японское море

Залив Петра Великого. В 2013 г. наблюдения за состоянием загрязнения вод Японского моря проводились в бухте Золотой Рог, в бухте Диомид, в проливе Босфор Восточный, в Амурском заливе, в Уссурийском заливе, в заливе Находка, включая бухты Находка, Врангеля и Козьмино. Среднегодовая концентрация нефтяных углеводородов в прибрежных водах залива Петра Великого изменялась в пределах 1,6–3,6 ПДК. Максимальная концентрация 50 ПДК (уровень экстремально высокого загрязнения) был зафиксирован в мае в вершине бухты Золотой Рог на поверхностном горизонте. По сравнению с 2012 г. среднегодовое содержание НУ во всех прибрежных районах залива Петра Великого снизилось: в бухте Золотой Рог и в заливе Находка – в 1,5 раза, в бухте Диомид – в 2,5 раза, в проливе Босфор Восточный и в Уссурийском заливе – в 2,9 раза, в Амурским заливе – в 2,1 раза. Среднее содержание фенолов в водах залива изменялось в диапазоне 0,7-1,8 ПДК, максимум (6,3 ПДК) был отмечен в ноябре в центральной

части бухты Золотой Рог в районе мыса Чуркина в поверхностном слое. Среднегодовое содержание АПАВ по сравнению с 2012 годом практически не изменилось и находилось в пределах 0,6–0,7 ПДК; максимальное значение (0,8 ПДК) было зарегистрировано в вершине Уссурийского залива в сентябре. В 2013 г. в прибрежных водах залива Петра Великого среднегодовое содержание металлов (меди, железа, цинка, свинца, марганца, кадмия и ртути) не превысило 1 ПДК. Средняя концентрация железа снизилась во всех прибрежных районах, а наиболее значительное снижение отмечено в проливе Босфор Восточный - в 3 раза, а также в бухте Золотой Рог – в 2,8 раза, в Амурском заливе – в 2,5 раза; в бухте Диомид и в заливе Находка - в 2 раза. Максимальная концентрация железа (22 ПДК) была зафиксирована в июне в Амурском заливе вблизи пос. Приморский; кроме того, значительное превышение норматива (11,4 ПДК) было зафиксировано в вершине Уссурийского залива в июле в придонном слое. В Амурском заливе, бухте Золотой Рог и в проливе Босфор Восточный отмечались повышенные концентрации цинка – 3,2; 1,1 и 2,4 ПДК соответственно.

Загрязнение морских вод хлорорганическими пестицидами (ХОП) группы ГХЦГ сохранилось на уровне среднемноголетних значений среднегодовые концентрации не превышали 0,1 ПДК. Максимальная концентрация α-ГХЦГ в 2013 г. не превысила 0,1 ПДК, а наиболее высокая ү-ГХЦГ (0,2 и 0,18 ПДК) была отмечена в бухте Золотой Рог и заливе Находка соответственно. Изменения в уровня загрязненности морских вод пестицидами группы ДДТ во всех исследуемых районах залива Петра Великого носили разнонаправленный характер. В Амурском заливе и бухте Золотой Рог среднее значение ДДТ по сравнению с 2012 г. практически не изменилось и составило 0,8 и 1,4 нг/дм 3 (<0,1 ПДК и 0,14 ПДК); среднее значение ДДЭ снизилось в 2 и в 2,7 раза до 0,3 и 0,7 нг/дм 3 соответственно. Среднее значение ДДД в Амурском заливе увеличилось со значений ниже предела обнаружения до $0,4\,\mathrm{Hr/дm^3}$, а в бухте Золотой Рог увеличилось в 2,6 раза и составило 1,8 нг/дм 3 (0,18 ПДК). В проливе Босфор Восточный, бухте Диомид, Уссурийском заливе и заливе Находка среднегодовые значения ДДТ по сравнению с 2012 г. повысились и составили 1,3; 0,9; 0,9 и 1,4 нг/дм³ соответственно. Среднегодовое содержание ДДЭ в проливе Босфор Восточный повысилось до 1,0 нг/дм 3 , в бухте Диомид уменьшилось в 1,6 раза до 0,8 нг/дм 3 , в Уссурийском заливе и заливе Находка практически не изменилось: 0,5 и 0,4 нг/дм³. Среднегодовое содержание ДДД в морской воде в проливе Босфор Восточный немного снизилось (с 1,9 до 1,5 нг/дм 3) и составило 0,15 ПДК. В бухте Диомид среднее значение ДДД практически не изменилось и составило 0.8 нг/дм^3 (<0.1 ПДК). В Уссурийском заливе и заливе Находка отмечен рост содержания ДДД с величин ниже предела обнаружения до 1,5 и 0,3 нг/дм³. Максимальная концентрация ДДТ в 2013 г. была зафиксирована в заливе Находка в мае: 8,8 нг/дм 3 (0,9 ПДК), максимум ДДЭ был зафиксирован в проливе Босфор Восточный в апреле – $3.4 \, \text{нг/дм}^3$ ($0.34 \, \Pi \text{ДK}$), максимум ДДД в бухте Золотой Рог в апреле – 14.8 нг/дм^3 (1,5 ПДК). Среднее суммарное содержание хлорорганических пестицидов группы ДДТ сохранилось практически на уровне 2012 г. и составило в бухте Золотой Рог, бухте Диомид и в Амурском заливе 3,9, 2,5 и 1,5 нг/дм 3 соответственно. В проливе Босфор Восточный, в Уссурийском заливе и заливе Находка суммарное содержание пестицидов группы ДДТ увеличилось в 1,2, в 3,12 и в 3 раза соответственно. Суммарное содержание пестицидов группы ГХЦГ по сравнению с 2012 г. не изменилось в бухтах Золотой Рог и Диомид, проливе Босфор Восточный, Уссурийском заливе и не превысило 0,2 нг/дм³ (<0,1 ПДК). В Амурском заливе и заливе Находка суммарное содержание пестицидов группы ГХЦГ повысилось и составило 0.2 и 0.4 нг/дм³.

Кислородный режим в прибрежных водах был в пределах среднемноголетней нормы. Среднее содержание растворенного кислорода в толще вод находилось в диапазоне 8,97- $9,76 \text{ MrO}_2/\text{дм}^3$. Минимальная концентрация в бухте Золотой Рог была зафиксирована в июле на поверхностном горизонте (2,86 мг O_2 /дм³, 0,47 ПДК), что соответствует уровню высокого загрязнения (ВЗ). В Амурском заливе в августе 2013 г. на придонном горизонте было зарегистрировано два случая высокого загрязнения: в вершине залива (2,50 мг O_2 /дм³, 0,4 ПДК) и на выходе из залива (2,64 мг O_2 /дм 3 , 0,44 ПДК). В проливе Босфор Восточный кислородный минимум был зафиксирован в августе вблизи мыса Безымянный (2,79 мг O_2 /дм³, 0,46 ПДК).

В 2013 г. в бухте Золотой Рог качество вод улучшилось и оценивалось как «загрязненные». В проливе Босфор Восточный, в бухте Диомид, в Амурском и Уссурийском заливах, а также в заливе Находка качество вод также улучшилось и оценивалось как «умеренно-загрязненные».

В 2013 г. среднемесячное содержание нефтяных углеводородов в донных отложениях прибрежных районов залива Петра Великого изменялось в диапазоне 0,10-8,05 мг/г сухого вещества. По сравнению с 2012 г. в бухте Диомид было отмечено снижение уровня загрязненности НУ в 1,95 раза. На всех остальных участках акватории залива уровень загрязненности донных отложений НУ повысился: в бухте Золотой

Рог – в 1,13 раза, в проливе Босфор Восточный – в 1,1 раза, в Уссурийском заливе – в 1,25 раза, в заливе Находка – в 1,1 раза. Практически не изменился уровень загрязненности НУ в Амурском заливе. По-прежнему, в наибольшей степени загрязнены нефтяными углеводородами донные отложения бухты Золотой Рог, где среднегодовая концентрация НУ в 2013 г. (6,44 мг/г) превысила допустимый уровень концентрации почти в 129 раз, а максимальное значение составило 20,22 мг/г (404 ДК).

В 2013 г. по сравнению с 2012 годом во всех прибрежных районах залива Петра Великого среднегодовое содержание фенолов в донных отложениях снизилось: в бухте Золотой Рог - в 3,7 раза (до 1,6 мкг/г), в бухте Диомид – в 3,7 раза (до 0,9 мкг/г), в проливе Босфор Восточный – в 2,9 раза (до 1,0 мкг/г), в Амурском заливе – в 4,4 раза (до 0,8 мкг/г), в Уссурийском заливе – в 5 раз (до 0,4 мкг/г), в заливе Находка – в 2,1 раза (до 1,0 мкг/г) и в бухте Находка – в 2,7 раза (до 0,6 мкг/г). Среднемесячное содержание фенолов в различных частях залива Петра Великого находилось в диапазоне 0,2–1,7 мкг/г; наибольшая концентрация отмечалась в бухте Золотой Рог и заливе Находка: до 2,7 и 2,9 мкг/г соотвественно.

Уровень загрязненности донных отложений хлорорганическими пестицидами группы ГХЦГ по сравнению с 2012 г. повысился. Средняя концентрация α-ГХЦГ варьировала от 0,2 (Амурский, Уссурийский заливы и залив Находка) до 3,8 нг/г (бухта Диомид), γ -ГХЦГ – от 0,1 нг/г (бухта Находка) до 2,0 нг/г (бухта Диомид). Максимальная концентрация ДДТ в донных отложениях разных районов залива Петра Великого изменялась от 4,7 (Амурский залив) до 35,8 нг/г (пролив Босфор Восточный); ДДЭ – от 3,9 (Амурский залив) до 24,1 нг/г (бухта Золотой Рог); ДДД – от 4,4 (Амурский залив) до 69,3 нг/г (бухта Золотой Рог). Среднегодовая суммарная концентрация пестицидов группы ДДТ в донных отложениях залива Петра Великого по сравнению с 2012 г. повысилась во всех районах и составила: в бухте Золотой Рог – 25,5 ДК (63,9 нг/г), в бухте Диомид – 14 ДК (35,5 нг/г), в проливе Босфор Восточный – 9 ДК (22,5 нг/г), в Амурском заливе – 1,8 ДК (4,6 нг/г), в Уссурийском заливе -2.8 ДК (7.1 нг/r), в заливе Находка -3 ДК (7,5 нг/г) и в бухте Находка – 7,4 ДК (18,5 нг/г). По результатам наблюдений в 2013 г. самым загрязненным районом по хлорорганическим пестицидам является бухта Золотой Рог, наименее загрязненным – Амурский залив.

В 2013 г. среднегодовая концентрация кобальта, никеля и меди в донных отложениях прибрежных районов залива Петра Великого изменялась в диапазоне 0,14–0,25 ДК; 0,3–0,5 ДК

и 0,2-5,3 ДК соответственно. Наиболее высокая концентрация меди отмечалась в бухтах Золотой Рог и Диомид. Среднее содержание других металлов находилось в пределах: кадмия – 0,6-2,75 ДК (бухта Диомид), свинца – 0,12–1,7 ДК (бухта Золотой Рог), цинка – 0,3–2,4 ДК (бухта Золотой Рог), ртути – 0,17–1,5 ДК (бухта Золотой Рог). Наиболее высокие среднегодовые концентрации марганца были зарегистрированы в бухте Золотой Рог (189,8 мкг/г), в бухте Находка (147,8 мкг/г) и в проливе Босфор Восточный (139,3 мкг/г). По-прежнему в донных отложения всех прибрежных районов залива Петра Великого отмечаются очень высокие концентрации железа: среднегодовые концентрации находились в пределах 18000-32871 мкг/г.

В 2013 г. качество вод различных участков залива Петра Великого сильно отличалось. Бухта Золотой Рог и прилегающие к ней участки акватории остаются одними из самых загрязненных на всем шельфе РФ. Несмотря на то, что состояние вод по сравнению с 2011-2012 годами несколько улучшилось за счет снижения концентраций основных приоритетных загрязняющих веществ (нефтяных углеводородов, фенолов, СПАВ, пестицидов, тяжелых металлов – железа, марганца и меди), оно характеризуется как кризисное. Вследствие постоянного поступления в море большого объема сточных и ливневых вод, приносящих в море значительное количество антропогенных загрязняющих веществ, значительного улучшения морской среды не отмечается. Как и в предыдущие годы, в 2013 г. максимальные концентрации достигали: нефтяных углеводородов – 50 ПДК, фенолов – 6 ПДК, железа – 4 ПДК. Несколько снизилось в водах бухты содержание хлорорганических пестицидов ДДТ и ГХЦГ, ртути и некоторых других загрязняющих веществ. В бухте нарушен кислородный режим.

По сравнению с бухтой Золотой Рог уровень загрязнения вод залива относительно невысокий, а качество вод оценивается как удовлетворительное. Приоритетными загрязняющими веществами являются нефтяные углеводороды (максимум 7 ПДК), фенолы (2,5 ПДК), детергенты (0,9 ПДК), железо (22 ПДК) и цинк (3 ПДК). Остальные контролируемые загрязняющие вещества, включая пестициды и ртуть, также присутствовали в водах залива, однако их максимальные значения не превышали норматива. Кислородный режим в целом удовлетворительный.

Татарский пролив. В 2013 г. регулярные наблюдения за уровнем загрязнения морских вод и донных отложений проводились в прибрежной зоне в районе порта г. Александровск-Сахалинский с мая по октябрь. Концентрация НУ в водах района по сравнению с 2012 годом

существенно возросла и изменялась в диапазоне от значений ниже предела обнаружения $(0,020 \,\mathrm{mr/дm^3})$ до 2,7 ПДК $(0,136 \,\mathrm{mr/дm^3})$, составив в среднем $0.9 \Pi Д K (0.046 \text{ мг/дм}^3)$. Содержание фенолов в воде пролива также увеличилось и находилось в диапазоне от менее предела обнаружения (0.5 мкг/дм^3) до 10.0 мкг/дм^3 , составив в среднем 1,1 мкг/дм 3 (1,1 ПДК). Диапазон концентрации АПАВ составил <10-46 мкг/дм³, среднегодовое значение 9,8 мкг/дм³. Средняя концентрация меди, свинца и цинка в водах Татарского пролива не превышала 1 ПДК, а максимальные значения составили 8,5; 10,3 и 6,2 мкг/дм³ соответственно. Кадмий не обнаружен. Содержание растворенного в воде кислорода изменялось в диапазоне 7,5–13,3 мг O_2 /дм³, составив в среднем 9,05 мг O_2 /дм³. В 2013 году качество вод пролива оценивается как «умеренно загрязненные». Качество морских вод в Татарском проливе в районе г. Александровска ухудшилось за счет увеличения уровня загрязнения нефтяными углеводородами и фенолами. В донных отложениях прибрежной зоны района г. Александровска содержание нефтяных углеводородов находилось в диапазоне от <5 до 1015 мкг/г абсолютно сухого грунта (20 ДК, в 12,5 раза больше значения 2012 года), в среднем 56 мкг/г. Средняя концентрация фенолов составила 0,01 мкг/г, максимум 7,1 мкг/г. Содержание тяжелых металлов в донных отложениях пролива находилось в пределах: меди – 0,15-7,1 мкг/г; цинка – 0,5-10,4 мкг/г и свинца – 0,5-12,3 мкг/г; содержание кадмия в донных отложениях пролива достигало 0,13 мкг/г.

Список ежегодных Обзоров загрязнения природных сред, издаваемых НИУ Росгидромета

1. Ежегодник качества поверхностных вод Российской Федерации по гидрохимическим показателям

ФГБУ «Гидрохимический институт»

(ФГБУ «ГХИ»)

344090, Ростов-на-Дону, пр. Стачки, 198

Факс: +7 (863) 222-44-70 E-mail: ghi@aaanet.ru

2. Ежегодник состояния экосистем поверхностных вод Российской Федерации по гидробиологическим показателям

ФГБУ «Институт глобального климата и экологии Росгидромета и РАН» (ФГБУ «ИГКЭ Росгидромета и РАН»)

107258, Москва, Глебовская ул., 20-б

Факс: +7 (499) 160-08-31 E-mail: semenov@igce.ru

3. Ежегодник «Мониторинг пестицидов в объектах природной среды Российской Федерации»

ФГБУ «НПО «Тайфун»

249038, Калужская обл., г. Обнинск, ул. По-

беды. 4

Факс: +7 (48439) 40-910

E-mail: post@typhoon.obninsk.ru

4. Ежегодник «Загрязнение почв Российской Федерации токсикантами промышленного происхождения»

ФГБУ «НПО «Тайфун»

249038, Калужская обл., г. Обнинск, ул. По-

беды, 4

Факс: +7 (48439) 40-910

E-mail: post@typhoon.obninsk.ru

5. Обзор фонового состояния окружающей природной среды на территории стран СНГ

ФГБУ «Институт глобального климата и экологии Росгидромета и РАН» (ФГБУ «ИГКЭ Росгидромета и РАН»)

107258, Москва, Глебовская ул., 20-б

Факс: +7 (499) 160-08-31 E-mail: semenov@igce.ru

6. Ежегодник качества морских вод по гидрохимическим показателям

ФГБУ «Государственный океанографический институт им. Н.Н. Зубова» (ФГБУ «ГОИН»)

119034, Москва, Кропоткинский пер., 6

Факс: +7 (495) 246-72-88 E-mail: adm@oceanography.ru

7. Ежегодник состояния загрязнения атмосферы в городах на территории Российской Федерации

ФГБУ «Главная геофизическая обсерватория

им. А.И. Воейкова» (ФГБУ «ГГО»)

194021, Санкт-Петербург, ул. Карбышева, 7

Факс: +7 (812) 297-86-61 E-mail: director@main.mgo.rssi.ru

8. Ежегодник «Радиационная обстановка по территории России и сопредельных государств»

ФГБУ «НПО «Тайфун»

249038, Калужская обл., г. Обнинск, ул. По-

беды, 4

Факс: +7 (48439) 40-910

E-mail: post@typhoon.obninsk.ru

vkim@typhoon.obninsk.ru

9. Ежегодный сборник информационно-справочных материалов «Состояние загрязнения окружающей среды Московского региона»

ФГБУ «Центральное УГМС»

127055 г. Москва, ул. Образцова, д. 6

Факс: +7 (495) 688-93-97 E-mail: moscgms-aup@mail.ru

10. Доклад об особенностях климата на территории Российской Федерации

ФГБУ «Институт глобального климата и экологии Росгидромета и РАН» (ФГБУ «ИГКЭ Росгидромета и РАН»)

107258, Москва, Глебовская ул., 20-б

Факс: +7 (499) 160-08-31 E-mail: semenov@igce.ru

11. Обзор состояния и загрязнения окружающей среды в Российской Федерации

ФГБУ «Институт глобального климата и экологии Росгидромета и РАН» (ФГБУ «ИГКЭ Росгидромета и РАН»)

107258, Москва, Глебовская ул., 20-б

Факс: +7 (499) 160-08-31 E-mail: semenov@igce.ru

Список авторов

РАЗДЕЛ 1

1.1.	ФГРА «ИШ;»	Денисова В.И., Свидский П.М.
1.2.	ФГБУ «Гидрометцентр	Голубев А.Д., Сидоренков Н.С.
	России»	
	Росгидромет	Жемчугова Т.Р.
1.31.4.	ФГБУ «ИГКЭ Росгидро-	Груза Г.В., Ранькова Э.Я., Бардин М.Ю., Рочева Э.В., Самохина О.Ф., Платова Т.В.,
	мета и РАН»	Соколов Ю.Ю.
1.5.	ФГБУ «Гидрометцентр	Сидоренков Н.С., Борщ С.В.
	России»	
1.6.	ФГБУ «ГГИ»	Вуглинский В.С., Гусев С.И., Куприёнок Е.И.

РАЗДЕЛ 2

•	глэдцл 2		
	2.1.	Росгидромет	Пешков Ю.В., Котлякова М.Г., Красильникова Т.А.
	2.2.1.	ФГБУ «ИГКЭ Росгидромета и РАН»	Нахутин А.И., Гитарский М.Л., Романовская А.А., Имшенник Е.В., Карабань Р.Т., Гинзбург В.А., Грабар В.А., Коротков В.Н., Говор И.Л., Смирнов Н.С.
	2.2.2.	ФГБУ «ГГО»	Парамонова Н.Н., Привалов В.И., Решетников А.И.
		ФГБУ «ИГКЭ Росгидромета и РАН»	Афанасьев М.И.
	2.3.1.	ФГБУ «ГГО»	Русина Е.Н., Боброва В.К.
	2.3.2.	ФГБУ «ГГО»	Соколенко Л.Г., Зайнетдинов Б.Г., Попов И.Б.
	2.3.3.	ФГБУ «ЦАО»	Звягинцев А.М., Иванова Н.С., Крученицкий Г.М.
	2.3.3.1.	ФГБУ «ГГО»	Шаламянский А.М., Ромашкина К.И.
	2.3.4.	ФГБУ «ИГКЭ Росгидромета и РАН»	Парамонов С.Г., Егоров В.И., Афанасьев М.И., Бурцева Л.В., Бунина Н.В., Латышев Б.А.
	2.3.5-2.3.6.	ФГБУ «ГГО»	Свистов П.Ф., Полищук А.И., Першина Н.А., Павлова М.Т.
	2.3.6.1.	ФГБУ «ИГКЭ Росгидромета и РАН»	Ветров В.А., Манзон Д.А., Кузовкин В.В.
	2.3.7.	ФГБУ «ИГКЭ Росгидромета и РАН»	Парамонов С.Г., Егоров В.И., Афанасьев М.И., Бурцева Л.В., Бунина Н.В.
	2.3.8.	ФГБУ «ИГКЭ Росгидромета и РАН»	Рябошапко А.Г., Брускина И.М., Громов С.А.
	2.3.9.	ФГБУ «ИГКЭ Росгидромета и РАН»	Громов С.А., Трифонова-Яковлева А.М., Бунина Н.А., Набокова Е.В.
		ФГБУ «ЛИН СО РАН»	Ходжер Т.В., Голобокова Л.П., Нецветаева О.Г.
	2.4.1.	ФГБУ «ИГКЭ Росгидромета и РАН»	Буйволов Ю.А., Парамонова Т.А., Вертянкина В.Ю., Парамонов С.Г., Бурцева Л.В., Афанасьев М.И., Пастухов Б.В.
	2.4.2.	ФГБУ «НПО «Тайфун»	Сатаева Л.В., Подвязникова Г.Е.
	2.4.3.	ФГБУ «ИГКЭ Росгидромета и РАН»	Позднякова Е.А., Пчелкина Т.А., Волков А. А., Кухта А. Е.
	2.5.1.	ФГБУ «ГХИ»	Лобченко Е.Е., Емельянова В.П., Первышева О.А., Лавренко Н.Ю., Власова М.П.
	2.5.2.	ФГБУ «ИГКЭ Росгидромета и РАН»	Парамонов С.Г., Егоров В.И., Афанасьев М.И., Бурцева Л.В., Кулакова М.О., Копылова М.С.
	2.6.	ФГБУ «НПО «Тайфун»	Булгаков В.Г., Гниломёдов В.Д., Каткова М.Н.
	2.6.1.	ФГБУ «НПО «Тайфун»	Булгаков В.Г., Каткова М.Н., Гниломёдов В.Д., Волокитин А.А., Полянская О.Н.
	2.6.2.	ФГБУ «НПО «Тайфун»	Катрич И.Ю., Федорова А.В., Валетова Н.К.
	2.6.3.	ФГБУ «НПО «Тайфун»	Булгаков В.Г., Гниломёдов В.Д., Каткова М.Н.

РАЗДЕЛ З

3.1.	ФГБУ «ГГО»	Безуглая Э.Ю., Ануфриева А.Ф., Ивлева Т.П., Любушкина Т.Н., Смирнова И.В., Симоненкова К.С.,	
3.2.1.	ФГБУ «НПО «Тайфун»	Сатаева Л.В., Подвязникова Г.Е.	
3.2.2.	ФГБУ «НПО «Тайфун»	Булгаков В.Г., Лукьянова Н.Н., Власова Г.В.	
3.3.1.	ФГБУ «ГХИ»	Никаноров А.М., Минина Л.И., Лобченко Е.Е., Ничипорова И.П., Емельянова В.П., Лямперт Н.А., Первышева О.А., Лавренко Н.Ю., Власова М.П., Листопа-	
		дова Н.Н.	
3.3.2.	ФГБУ «ИГКЭ Росгидромета и РАН»	Буйволов Ю.А., Лазарева Г.А., Быкова И.В.	
3.3.3.	ФГБУ «ИГКЭ Росгидромета и РАН»	Жадановская Е.А., Журавлева Л.Р.	
3.3.4.	ФГБУ «ГХИ»	Матвеева Н.П., Коротова Л.Г., Якунина О.В., Архипенко Н.И.	
3.3.5.	ФГБУ «ГОИН»	Коршенко А.Н., Крутов А.Н., Аляутдинов В.А., Матвейчук И.Г., Косевич Н.И., Иванов Д.Б.	
3.3.6.1.	ΦΕΕΥ ΜΕΙ' Doorwanessome v DALL	Володкович Ю.Л., Цыбань А.В.	
3.3.6.2.	ФГБУ «ИГКЭ Росгидромета и РАН»	Цыбань А.В., Щука Т.А., Щука С.А.	

РАЗДЕЛ 4

4.1.1 4.1.3.	ФГБУ «Центральное УГМС»	Трухин В.М., Минаева Л.Г., Трифиленкова Т.Б., Плешакова Г.В., Попова Е.И., Ракчеева Е.А., Терешонок Н.А.
	ФГБУ «ИГКЭ Росгидромета и РАН»	Малеванов Ю.А.
4.1.4.	ФГБУ «ИГКЭ Росгидромета и РАН»	Пчелкина Т.А., Пчелкин А.В.
4.2.1.		Матвеев А.А.
4.2.2.		Аниканова М. Н; Аджиев Р. А.
4.2.3.	ФГБУ «ГХИ	Резников С.А., Аракелян В.С.
4.2.4.		Якунина О.В.
4.2.5.		Тезикова Н.Б.
4.2.6.	ФГБУ «ИГКЭ Росгидромета и РАН»	Безделова А.П., Пастухов Б.В.
4.3.	Северо-Западный филиал ФГБУ «НПО «Тайфун»	Демин Б.Н., Демешкин А.С., Граевский А.П.
4.4.	ФГБУ «НПО «Тайфун»	Панкратов Ф.Ф.
4.5.1.	ФГБУ «НПО «Тайфун»	Булгаков В.Г., Васильева К.И.
4.5.2.	ФГБУ «ГГО»	Чичерин С.С.,
	ФГБУ «НПО «Тайфун» ФГБУ «ГХИ»	Булгаков В.Г., Васильева К.И.
		Минина Л.И., Лобченко Е.Е.
4.5.3.	ФГБУ «НПО «Тайфун»	Булгаков В.Г., Лукьянова Н.Н.

ЗАКЛЮЧЕНИЕ

ФГБУ «ИГКЭ Росгидромета и РАН» Черногаева Г.М.

для заметок

<u>. </u>	

Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет)

ОБЗОР СОСТОЯНИЯ И ЗАГРЯЗНЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ В РОССИЙСКОЙ ФЕДЕРАЦИИ ЗА 2013 ГОД

© Росгидромет, 2014 г.

Подписано в печать 18.09.2014 г. Формат 60х90 1/8. Печать офсетная. Усл. печ. л. 28,75. Тираж 450 экз. Заказ 1250

Отпечатано: ООО "Лайт", 394033, Воронеж, Ленинский проспект, 119A, корпус 5, офис 205.

